Collaborations between university researchers and the pharmaceutical industry are no rarity these days. But Novartis’s biomedical research arm and the new Broad Institute across the street in Cambridge, Massachusetts, plan an unusually open partnership. This week they intend to announce an effort to understand the genetic basis of adult-onset diabetes and release validated data publicly rather than keep it proprietary.

Companies typically demand that data created in cooperative ventures—which can be mined for new discoveries—be kept safe from competitors’ prying eyes. But Novartis is betting that the benefits of openness will outweigh those of secrecy, and the company intends to put the genetic variation data it collects on a public Web site. “I’m doing this to make a statement in the world of medical science that the patient should come first,” says Mark Fishman, president of Novartis’s biomedical efforts and a former Harvard Medical School professor. “You gain much more by being open.” While the team will forswear filing patents on the database, it will allow others to patent a new therapy or diagnostic test based on the shared information.

More than 170 million people suffer from adult-onset diabetes, a disease that is expected to nearly double within the next 2 decades. The disease “is one of the most pressing public health problems in the industrialized world,” says David Altschuler, a Broad researcher and the project’s principal investigator. The deal would funnel $4.5 million in Novartis funding to the effort over 3 years, with Broad contributing its vast array of genomic equipment as well as the expertise of its 149 Ph.D. scientists. Leif Groop and his colleagues at Lund University in Sweden, who have collected thousands of DNA samples from diabetes patients, will also participate in the venture.

The initial goal will be to gather data on genetic variants associated with adult-onset diabetes. Once researchers are confident of the quality, and after they have removed details that could be used to identify individual patients, both genetic and clinical information on gene associations will be posted on the Web. Raw data cannot be released publicly because patients were not asked to give consent for this, adds Altschuler.

The idea of public release of data produced with industry funding excites many in the research community. “This fits nicely with a growing and laudable trend for public accessibility of research data,” says Francis Collins, director of the National Institutes of Health’s National Human Genome Research Institute in Bethesda, Maryland. Eric Campbell, a health policy researcher at Harvard Medical School in Boston who has studied industry-academic partnerships, adds that “clearly everyone could benefit by making data public.” Openness is the best spur to scientific advances, he notes. “And an arrangement which fosters sharing of data and reduces potential redundancy is good.”

Fishman acknowledges that he struggled to convince Novartis’s board that the approach made sense, and he adds that public data release was not a condition set by Broad but a mutual decision. “This is a very remarkable step for both parties,” he says. Novartis relocated its research effort to Cambridge 2 years ago, he adds, to take advantage of institutes such as Broad. That proximity gives him confidence that he won’t be giving away the store to the competition, Fishman says. Broad researchers will have to sign an agreement prohibiting them from discussing information they learn about other Novartis projects during the course of their work.

A steering committee with Broad, Novartis, and outside members will set the research direction for the effort, and Altschuler pledges that the first data will be made public in 2005. “There will be no restrictions or delays on data release,” he adds. “No matter how effective we can be” at making use of the data, says Altschuler, “we can’t be as effective as the rest of the world.”

—ANDREW LAWLER

PUTIN WEIGHS IN ON RUSSIAN ACADEMY REFORMS

Russian scientists worried about an impending retooling of the Russian Academy of Sciences got little reassurance from President Vladimir Putin this week. “No one is going to destroy the academy, this is out of the question,” Putin told the first meeting of the Council for Science, Technologies, and Education in Moscow. But Russia’s massive research organization “was created in different conditions, in a different country, in a different economic and political situation,” he said, adding that the challenge now is to prevent it from being “disintegrated in the whirlwind of [current] events.”

Last month, leaked documents that hinted at possible reforms—including funding cuts and institute closures—provoked vocal protests from Russian scientists (Science, 24 September, p. 1889). A formal plan, however, has yet to surface.

—SEAN BRUCH