RESEARCH FUNDING

UC Balks at Campus-Wide Ban on Tobacco Money for Research

Concerned about academic freedom, the University of California (UC) has delayed voting on a plan to impose a blanket ban on research funding from tobacco companies. If approved, the ban would make UC the only U.S. university to forbid tobacco dollars campus-wide. Faculty members anguished over the issue for 4 years before calling on UC’s governing body—the regents—to take a stand. Instead, the regents punted it back to the faculty last week.

“It’s a very good decision,” says James Enstrom, an epidemiologist at UC Los Angeles who uses Philip Morris money. “Academic freedom makes this a great university, and the faculty need time to consider this issue more thoroughly.” But Stanton Glantz, a bioengineer and antitobacco crusader at UC San Francisco, turns the argument around: “The tobacco industry funds research to confuse the public,” he says. “This manipulation of the scientific process subverts academic freedom and is antithetical to the fundamental mission of the university.”

Momentum for a UC-wide ban on tobacco funding has been building. Since 2003, seven units within the university system, including UC Berkeley’s School of Public Health and the UC San Diego Cancer Center, have shut their doors to tobacco money. But UC’s faculty-composed Academic Senate voted to allow a threat to academic freedom.

Enstrom disagrees. “I do not feel that any tobacco funding arrangements I’ve had have manipulated my academic freedom,” he says. In 2003, Enstrom published a study in the British Medical Journal that found no relation between secondhand smoke and lung cancer deaths. The project was partially funded by the Center for Indoor Air Research, which itself is funded by tobacco companies. Enstrom says the study was methodologically sound and that it added an important minority opinion to the smoking debate. “Thankfully, UC doesn’t allow only certain points of view to be funded,” he says. “My entire career has been based on the academic freedom I’ve had.”

The senate’s recommendation to the regents reflected the divisiveness of the issue. On one hand, the faculty asserted that grave issues of academic freedom would be raised if the regents banned funding based solely on its source. On the other, they declared that academic freedom could be suppressed, and that the tobacco industry had a history of such suppression.

The seemingly contradictory wording proved too much for the regents. At an
ACADEMIC RESEARCH

Harvard Proposes One for the Team

Talk about greater collaboration across academic departments is cheap. But making it happen can be very expensive. Last week, Harvard University made a $50 million down payment on the concept, including seed money for a first-ever, university-wide department in developmental and regenerative biology. The move is part of a major expansion of the university’s sciences and engineering programs, including a planned $500 million campus across the Charles River that was unveiled earlier this month.

“There’s a lot of life left in the disciplinary sciences, but at the same time, there is a trend toward concentration of resources and larger-scale collaborative science,” says Harvard Provost Steven Hyman, who last week announced the creation of a Harvard University Science and Engineering Committee (HUSEC). The committee, which will report to Harvard’s president and its governing board, will use the $50 million to plan the new department—which will include stem cell research—and seed other initiatives, some of which could lead to similar new departments.

Harvard professors have traditionally conducted their research and training within the confines of a particular school, be it the Faculty of Arts and Sciences (FAS), the medical school and affiliated hospitals, or the schools of public health and of engineering and applied sciences. Although some universities eroded those lines decades ago, working across departmental boundaries at Harvard is “not unlike [working] with two entirely separate institutions,” says Douglas Melton, co-director of the Harvard Stem Cell Institute. Hyman will chair the university-wide committee, which he hopes will keep the 366-year-old institution among the leaders in all fields of science and engineering through the 21st century. And Hyman, rumored to be on the short list of Harvard presidential candidates, assumes that many of the committee’s recommendations will cost money. “We expect [the committee] to propose a budget, and we know that a lot more will be needed,” he says. “But this shows the faculty that we are serious.”

The new department will eventually have 25 to 30 faculty members, says Hyman—about half migrating from existing programs and the rest new appointments—and report to both FAS and medical school deans. It will serve as a focal point for the work of nearly 700 people, a cluster that Melton calls “one of the highest concentrations in the world of stem cell scientists.” Stem cell institute co-director David Scadden says the new department will be a “critical complement” to the activities of the institute, which will occupy space in the department’s new building on the Allston campus, scheduled for completion in 2010. All the members of the new department will be part of the institute, which now has 45 principal faculty members.

Nancy Andrews, dean of basic sciences at the medical school and a co-author of a report last summer that recommended the formation of HUSEC, calls the department “the obvious first choice” for interdisciplinary research because of the field’s rapid growth.

Hyman expects the new committee to have a detailed plan in place for the new department by 1 April. “They are keen to begin recruiting,” he notes. And he compares what Harvard is doing to the road map created a few years ago by National Institutes of Health Director Elias Zerhouni for more interdisciplinary programs across the agency’s 27 institutes and centers. “That was his response to the changing world of science,” says Hyman. “And this is our response.”

—JEFFREY MERVIS

With reporting by Constance Holden.

New Cell Rules

The Wisconsin Alumni Research Foundation (WARF) has scaled back tough licensing rules restricting academic research on its broadly patented human stem cell lines. Previously, a company needed a license even for university-based research using the WARF lines. That restriction has been lifted, although a company must still have a license to do its own work or develop products. The foundation also clarified its fees and how academics can transfer cell lines.

Jon Soderstrom, managing director of Yale’s Office of Cooperative Research, says the old rules were confusing, restrictive, and inconsistent. The change is “coming at a very crucial time for us,” he says, as the school is now setting up a new stem cell program. The Santa Monica, California–based Foundation for Taxpayer and Consumer Rights (FTCR) says the move alleviates its concerns about restrictive policies that would hinder work at the new California Institute for Regenerative Medicine. However, FTCR still believes WARF’s patents are invalid, and the U.S. Patent and Trademark Office is currently reviewing an administrative request filed by the group to review the patents.

—ELI KINTISCH

Big Bucks for ALS

The latest sign of the increasing focus of disease advocacy groups on research is a $36 million pledge by two nonprofit groups to identify new molecular targets against amyotrophic lateral sclerosis (ALS). The venture comes as one of the groups abandons efforts to tackle ALS via published drug targets. After testing 150 existing drugs in 22,000 mice, “we’ve pretty much exhausted all the logical targets for ALS,” says Sean Scott, president of the ALS Therapy Development Institute (ALS-TDI) in Cambridge, Massachusetts.

ALS-TDI is partnering with the wealthier Muscular Dystrophy Association (MDA) in Tucson, Arizona. Scott’s research staff of 24 will add 10 scientists probing gene and protein expression across healthy and diseased mice and human tissue collected through MDA’s network of medical clinics. The goal is to identify genes that behave differently in ALS in hopes of finding out how those differences affect the disease.

Jeffrey Rothstein, who is supporting work on new ALS mouse models at the Robert Packard Center for ALS Research through Johns Hopkins University in Baltimore, Maryland, has high hopes for the new partnership. But he worries that existing mouse models may not be reliable enough to serve as a guide.

—JENNIFER COUZIN